
Natural RPC
(Remote Procedure Call)

Version 5.1.1 for Windows

This document applies to Natural Version 5.1.1 for Windows and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© August 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of
Software AG. Other products and company names mentioned herein may be the trademarks of their
respective owners.

Table of Contents
.................. 1Natural RPC - Overview
.................. 1Natural RPC - Overview
.................. 3Principles of Natural RPC
.................. 3Principles of Natural RPC
.................. 3General Information
..................... 3Purpose
............ 3Advantages of Natural Remote Procedure Calls
............... 4Natural RPC Modes of Operation
............... 4Availability on Various Platforms
.............. 5Support of Non-Natural Environments
................... 5Prerequisites
........... 6Natural RPC Operation in Non-Conversational Mode
............ 7Issuing CALLNATs in an RPC Environment
............ 9Natural RPC Operation in Conversational Mode
.......... 9General Rules for Local/Remote Subprogram Execution
............ 10Conversational versus Non-Conversational Mode
....... 11General Rules for Use of Conversational/Non-Conversational RPC
........... 11Possible Disadvantage of Using Conversational RPC
.................. 11Database Transactions
............... 11Non-conversational CALLNAT
................ 11Conversational CALLNAT
........... 12Restrictions and Limitations when Using Natural RPC
................. 12User Context Transfer
................. 12System Variable Transfer
.............. 12Parameter Handling in Error Situations
................ 13Natural Statement Reactions
............... 13Dynamic Arrays in Subprograms
................ 13Location of Conversations
........... 13Future Restrictions of Statement Usage with RPC
............... 15Setting Up a Natural RPC Environment
............... 15Setting Up a Natural RPC Environment
................. 15Setting Up a Natural Client
................. 16Setting Up A Natural Server
............... 17Setting Up an EntireX Broker Access
.............. 18Using TCP/IP as a Transport Method
............. 19Setting Up an EntireX Broker Environment
................. 20Starting a Natural Server
......... 20Starting a Natural Server in a Mainframe Online Environment
................. 20Starting a Batch Server
............ 20Starting a Server in an OpenVMS Environment
............. 21Starting a Server in a UNIX Environment
............ 21Starting a Server in a Windows Environment
.......... 22Considerations for Natural RPC Servers with Replicates
............ 22Natural RPC Batch Server with NTASKS >1
............. 22Running a Batch Server with Replicates
............... 23Operating a Natural RPC Environment
............... 23Operating a Natural RPC Environment
............... 23Specifying RPC Server Addresses
................ 23Using Local Directory Entries
............... 24Using Remote Directory Entries
.......... 24Specifying a Default Server Address at Natural Startup
......... 24Specifying a Default Server Address within a Natural Session
................ 25Using an Alternative Server

iCopyright © Software AG 2002

Table of ContentsNatural RPC - Overview

............... 25Using EntireX Location Transparency

................ 26Stubs and Automatic RPC Execution

................. 27Creating Stub Subprograms

............ 27Working with Automatic Natural RPC Execution

............. 27Modifying RPC Profile Parameters Dynamically

................. 27Executing Server Commands

.................. 28Logon to a Server Library

.................. 28Using the LOGON Option

............... 29Settings Required on the Client Side

............... 29Settings Required on the Server Side

............... 29Using Natural RPC with Natural Security

............... 29Using Natural RPC with EntireX Security

..................... 30Client Side

..................... 31Server Side

.................... 32Using Compression

.................. 32Using Secure Socket Layer

................. 33Using Interface USR2035N

............... 34Monitoring the Status of an RPC Session

................. 34Using the RPCERR Program

................ 34Using the RPCINFO Subprogram

................ 36Using the Server Trace Facility

.................. 37Defining the Trace File

.................... 38Handling Errors

.................. 38Remote Error Handling

........... 38Avoiding Error Message NAT3009 from Server Program

.................. 38User Exit NATRPC01

.................. 39Using a Conversational RPC

.................. 39Using a Conversational RPC

................... 39Opening a Conversation

................... 40Closing a Conversation

................. 41Defining a Conversation Context

.............. 41Modifying the System Variable *CONVID

................ 42Using a Remote Directory Server - RDS

................ 42Using a Remote Directory Server - RDS

.................. 42RDS Principles of Operation

................. 44Using a Remote Directory Server

.................. 46Creating an RDS Interface

.............. 48Creating a Remote Directory Service Routine

............. 49Remote Directory Service Program RDSSCDIR

Copyright © Software AG 2002ii

Natural RPC - OverviewTable of Contents

Natural RPC - Overview
New Features with Natural RPC Version 5.1
With (Remote Procedure Call) Version 5.1, the Natural RPC provides new features. Features only available with
Natural RPC Version 5.1 are identified with a corresponding remark.

This documentation covers both the new features of Natural RPC 5.1 and the features of the current Natural RPC
version.

Remote procedure call (RPC) techniques establish a framework for communication between server and client
systems that can be located on the same computer or based on a network of identical or heterogeneous machines
and operating systems. Several basically similar methods are known. This documentation describes the theory of
operation and the use of the RPC techniques provided by Natural to enable the design and to simplify the
application of distributed software systems.

Related Documentation:
For instructions on the functions provided to maintain remote procedure calls refer to the Natural SYSRPC
Utility documentation.

This document is organized in the following sections:

Principles of Natural RPC

Setting up a Natural RPC Environment

Operating a Natural RPC Environment

Using a Conversational RPC

Using a Remote Directory Server (RDS)

Restriction for CSCI

The CSCI transport protocol is only supported under OpenVMS.

Related Products

EntireX RPC for 3GL, Entire Network, EntireX Broker

Definition of Terms

The following table provides an overview of important key terms used in the SYSRPC Utility and the Natural
RPC documentation:

1Copyright © Software AG 2002

Natural RPC - OverviewNatural RPC - Overview

Term Explanation

Client Stub Accepts the CALLNAT requests on the client side, marshalls the parameters passed,
transmits the data through the Natural RPC runtime and the transport layer to the remote
server, unmarshalls the result and returns it to the caller.

The client stub is the local subprogram via which the server subprogram is called. The
client stub has the same name and contains the same parameters as the corresponding
server subprogram.

EntireX Broker
Stub

Interface between the Natural RPC runtime and the EntireX Broker transport layer which
exchanges marshalled data between client and server.

NATCLTGS The name of the Natural subprogram generated with the SYSRPC utility to implement the
service directory (see below).

Node Name The name of the node to which the remote CALLNAT is sent.

In case of communication via the EntireX Broker, the node name is the name of the
EntireX Broker for example, as defined in the EntireX Broker attribute file, in the field
BROKER-ID.

RPC Parameters All parameters available to control a Natural RPC as described in the Natural Parameter
Reference documentation: see the section Profile Parameters.

SERVDIRX The name of the XML-formatted file (Natural text member) generated with the SYSRPC
utility to implement the service directory (see below).

Service Directory The service directory contains information on the services (subprograms) that a server
provides. It can be locally available on each client node, or it can be located on a remote
directory server referenced by the RDS profile parameter (see the relevant section in the
Natural Parameter Reference documentation).

Server Name The name of the server on which the CALLNAT is to be executed.

In case of communication via EntireX Broker, the server name is the name as defined in the
EntireX Broker attribute file, located in the field SERVER.

Server Task A Natural task which offers services (subprograms). This is typically a batch task or
asynchronous task. It is identified by a server name.

Copyright © Software AG 20022

Natural RPC - OverviewNatural RPC - Overview

Principles of Natural RPC
This section covers the following topics:

General Information
Natural RPC Operation in Non-Conversational Mode
Natural RPC Operation in Conversational Mode
Conversational versus Non-Conversational Mode
Database Transactions
Restrictions and Limitations when Using Natural RPC

General Information
The following topics are covered below:

Purpose
Advantages of Natural Remote Procedure Calls
Natural RPC Modes of Operation
Availability on Various Platforms
Support of Non-Natural Environments
Prerequisites

Purpose

The Natural RPC facility enables a client Natural program to issue a CALLNAT statement to invoke a
subprogram in a server Natural. The Natural client and server sessions may run on the same or on a different
computer.

Example:

A Natural client program on a Windows computer can issue a CALLNAT against a mainframe server in order to
retrieve data from a mainframe database. The same Windows computer can act as a server if a Natural client
program running under, for example, OpenVMS issues a CALLNAT requesting data from a server Natural.

Advantages of Natural Remote Procedure Calls

Natural RPC exploits the advantages of client server computing. In a typical scenario, Natural on a Windows
client computer accesses server data (using a middleware layer) from a Natural on a mainframe computer. The
following advantages arise from that:

The end user on the client can use a Natural application with a graphical user interface.
A large database can be accessed on a mainframe server.
Network traffic can be minimized when only relevant data are sent from client to server and back.

3Copyright © Software AG 2002

Principles of Natural RPCPrinciples of Natural RPC

Natural RPC Modes of Operation

The Natural Remote Procedure Call offers the following modes of operation:

non-conversational mode (in the following texts this mode is meant unless otherwise specified)
conversational mode

These modes are described in detail in the following sections. For a comparison of the advantages and
disadvantages of these modes refer to Conversational versus Non-Conversational Mode.

Availability on Various Platforms

You can use the Natural RPC on various platforms under the following operating systems:

Mainframe Environments

OS/390
VSE/ESA
VM/CMS
BS2000/OSD

Natural RPC on mainframes is supported under the following TP monitors:

Com-plete
CICS
IMS/TM
TSO
UTM

Also, it is available in batch mode.

Other Environments

OpenVMS
UNIX
Windows

On all of these platforms, Natural can act as both client and server.

Exception: Under Windows 98 and Windows ME, Natural can only act as client.

Copyright © Software AG 20024

Principles of Natural RPCNatural RPC Modes of Operation

Support of Non-Natural Environments

Non-Natural environments (3GL and other programming languages) are supported on the client and the server
side. Thus, a non-Natural client can communicate with a Natural RPC server, and a Natural client can
communicate with a non-Natural RPC server. This is enabled by the use of the EntireX SDK.

Prerequisites

The Natural RPC interface requires the following products:

Software AG EntireX Broker (including the stubs).
Software AG Entire Net-work (if the transport method used by EntireX Broker is Entire Net-work)
TCP/IP (if the transport method used by EntireX Broker is TCP/IP)
EntireX SDK for non-Natural programming language support.
Directory services if the location transpareny provided by Software AG EntireX Broker is used.

5Copyright © Software AG 2002

Support of Non-Natural EnvironmentsPrinciples of Natural RPC

Natural RPC Operation in Non-Conversational Mode
The non-conversational mode should be used only to accomplish a single exchange of data with a partner. See
also Conversational versus Non-Conversational Mode.

The Natural RPC technique uses the Natural statement CALLNAT, so that both local and remote subprogram
calls can be issued in parallel. Remote program calls work synchronously. As a remote procedure call, a
CALLNAT would, simply speaking, take the following route:

The CALLNAT issued from the Natural Client is routed via a middleware layer to the Natural Server which
passes data back to the client.

Usually, the middleware layer consists of the Software AG product EntireX Broker which uses the ACI protocol.
EntireX Broker uses either NETWORK or TCP/IP as communication layer.

A detailed example of the RPC control flow is described below.

Copyright © Software AG 20026

Principles of Natural RPCNatural RPC Operation in Non-Conversational Mode

Issuing CALLNATs in an RPC Environment

CALLNAT control flow details in a remote procedure are illustrated below. For greater clarity, the return path is
not shown, but it is analogous; the numbers refer to the description:

7Copyright © Software AG 2002

Issuing CALLNATs in an RPC EnvironmentPrinciples of Natural RPC

1. From the Natural client, the program PGM1 issues a CALLNAT to the subprogram SUB1. PGM1 does not
know if its CALLNAT will result in a local or in a remote CALLNAT.
As the target SUB1 resides on a server, the CALLNAT accesses a "stub" subprogram SUB1 instead. This
client stub subprogram has been created automatically or by using the SYSRPC Utility’s Stub Generation
(SG) function.
The stub has the same name as the target subprogram and contains parameters identical with those used in
program PGM1 and the target subprogram SUB1 on the server. It also contains control information used
internally by the RPC.
If the parameter AUTORPC is set to ON and Natural cannot find the subprogram in the local environment,
Natural will interpret this as a remote procedure call and will generate the parameter area dynamically
during runtime.
It will also try to find this subprogram in the Service Directory.

For more information on the SYSRPC Stub Generation function, see also Creating Stub Subprograms.
If you want to work without stubs, see also Working with Automatic Natural RPC Execution.

2. The stub then sets up a CALLNAT to an RPC client service routine.
3. The client RPC runtime checks in the service directory NATCLTGS on which node and server the

CALLNAT is to be performed and whether a logon is required.
The CALLNAT data including the parameter list and optionally the logon data are passed to a middleware
layer.

4. In this example, this middleware layer consists of the Software AG product EntireX Broker. Therefore, the
CALLNAT data is first passed to an EntireX Broker stub on the client.

5. From the EntireX Broker stub, the CALLNAT data is passed to the EntireX Broker. The EntireX Broker is
a product that can reside:

on the client computer
on the server computer or
on a third platform.

For the data to be passed on successfully, the server SRV1 must be defined in the EntireX Broker attribute
file and SRV1 must be already up, thus having registered with EntireX Broker.
For information on how to define servers in the EntireX Broker attribute file, see the EntireX Broker
documentation.

6. From the middleware layer, the CALLNAT data is passed on to the EntireX Broker Stub on the Natural
Server platform and from there to the RPC server runtime.
The server runtime validates the logon data (if present) and performs a logon (if requested).

7. The RPC server runtime invokes the target subprogram SUB1 and passes the data, if requested.
At this point, the target subprogram SUB1 has all the required data to execute just as if it had been invoked
by a local program PGM1.

8. Then, for example, SUB1 can issue a FIND statement to the server’s Adabas database. SUB1 does not
know whether it has been performed by a local or by a remote CALLNAT.

9. Adabas FINDs the data and passes them to SUB1.
Then, SUB1 returns the Adabas data to the calling server service routine, which passes it back to PGM1 via
the middleware layer using the same route as described in Steps 1 to 8, but in reverse order.

Copyright © Software AG 20028

Principles of Natural RPCIssuing CALLNATs in an RPC Environment

Natural RPC Operation in Conversational Mode
A conversational RPC is a static connection of limited duration between a client and a server. It provides a
number of services (subprograms) defined by the client, which are all executed within one process that is
exclusively available to the client for the duration of the conversation.

Multiple connections (conversations) can exist at the same time. They are maintained by the client by means of
conversation IDs, and each of them is performed on a different server. Remote procedure calls which do not
belong to a given conversation are executed on a different server, within a different process.

During a conversation, you can define and share a data area called context area between the remote subprograms
on the server side.

A conversation may be local or remote.

Example:

OPEN CONVERSATION USING SUBPROGRAM ’S1’’S2’
 CALLNAT ’S1’ PARMS1
 CALLNAT ’S2’ PARMS2
 CLOSE CONVERSATION ALL

Both subprograms (S1 and S2) must be accessed at the same location, i.e. either locally or remotely. You are
not allowed to mix up local and remote CALLNATs within a conversation. If the subprograms are executed
remotely, both subprograms will be executed by the same server replicate.

Analogously to non-conversational RPC CALLNATs, conversations may first be written and tested locally and
can then be transferred to the servers.

General Rules for Local/Remote Subprogram Execution

Local Subprogram Execution

If you execute subprograms locally, the following rule applies:

A subprogram may not call another subprogram which is a member of the conversation.

Other subprograms not listed in the OPEN CONVERSATION statement may be called. They are executed in
non-conversational mode.

Remote Subprogram Execution

If you execute subprograms remotely, the following rule applies:

A subprogram S1 may call another subprogram S2 which is a member of the conversation.

This CALLNAT will be executed in non-conversational mode because it was invoked indirectly. Thus, the
subprogram S2 does not have access to the context area.

9Copyright © Software AG 2002

Natural RPC Operation in Conversational ModePrinciples of Natural RPC

Conversational versus Non-Conversational Mode
In a client-server environment where several clients access several servers in non-conversational mode, there
may be the problem that identical CALLNAT requests from different clients are executed on the same server.

This means, for example, that a CALLNAT ’P1’ from Client 1 executes Subprogram 1 on server A (P1 is writing
a record to the database). The transaction for Client 1 is not yet complete (no END TRANSACTION) when
Client 2 also sends a CALLNAT ’P1’ to server A, thus overwriting the data from Client 1. If Client 1 then sends
a CALLNAT ’P2’ (meaning END TRANSACTION), Client 1 thinks its data have been saved correctly while the
data from client 2’s identical CALLNAT have in fact been saved.

The diagram below illustrates this with two clients and three servers. In such a scenario, you cannot control
whether two identical CALLNATs from two different clients access the same subprogram on the same server:

CALLNAT ’P1’ from Client 1 can access Subprogram 1 on server A, B, or C. CALLNAT ’P1’ from Client 2 has
the same choice. It is obvious that interference can be a problem here if the subprograms are designed to be
executed within one process context.

You can avoid the potential problems of a non-conversational RPC by defining a more complex RPC
transaction. You do this by opening a conversation, for example, on Client 1 comprising CALLNAT ’P1’ and
CALLNAT ’P2’. Opening such a conversation reserves one entire server replicate (for example, server A) and
no other remote CALLNATs may interrupt this conversation on this server until the conversation is closed.

Copyright © Software AG 200210

Principles of Natural RPCConversational versus Non-Conversational Mode

General Rules for Use of Conversational/Non-Conversational RPC

As a general rule, the following applies:

Use the conversational RPC to ensure that a defined list of subprograms is executed exclusively within one
context.
Use the non-conversational RPC if each of your subprograms can be used within a different process or if
the transaction does not extend over more than one server call. The advantage of this is that no server blocks
over a significant amount of time and you only need a relatively small number of server replicates.

Possible Disadvantage of Using Conversational RPC

A possible disadvantage of conversational RPCs is that you reserve an entire server replicate, thus blocking all
other subprograms on this server. As a consequence, other CALLNATs might have to wait or more server
replicates must be started.

Database Transactions
The database transactions on the client and server side run independent of each other. That is, an END
TRANSACTION or BACKOUT TRANSACTION executed on the server side does not effect the database
transaction on the client side and vice-versa.

At the end of each non-conversational CALLNAT and at the end of each conversation, an implicit BACKOUT
TRANSACTION is executed on the server side. To commit the changes made by the remote CALLNAT(s), you
have the following options:

Non-conversational CALLNAT
Conversational CALLNAT

Non-conversational CALLNAT

1. Execute an explicit END TRANSACTION before leaving the CALLNAT.
2. Set the Natural profile parameter ETEOP to ON (mainframe platforms) or set the Natural profile parameter

OPRB to OFF (non-mainframe platforms). These settings result in an implicit END TRANSACTION at the
end of each non-conversational CALLNAT.

Conversational CALLNAT

1. Execute an explicit END TRANSACTION on the server before the conversation is terminated by the client
2. Set the Natural profile parameter ETEOP to ON (mainframe platforms) or set the Natural profile parameter

OPRB to OFF (non-mainframe platforms). These settings result in an implicit END TRANSACTION at the
end of each conversation.

3. Before executing the CLOSE CONVERSATION statement, call the interface USR2032N on the client side.
This will cause an implicit END TRANSACTION at the end of the individual conversation.

11Copyright © Software AG 2002

Database TransactionsPrinciples of Natural RPC

Restrictions and Limitations when Using Natural RPC
When executing a subprogram by using the Natural RPC facility, several differences to local execution apply.

User Context Transfer
System Variable Transfer
Parameter Handling in Error Situations
Natural Statement Reactions
Dynamic Arrays in Subprograms
Location of Conversations
Future Restrictions of Statement Usage with RPC

User Context Transfer

Excepting the user identification, no user context is transferred to the server session, for example:

all client session parameters remain unchanged and do not affect the execution on the server side;
open transactions on the client side cannot be closed by the server and vice versa;
client report handling and work-file processing cannot be continued on the server side and vice versa;
the handling of the Natural stack cannot be continued either.

System Variable Transfer

No system variables except *USER can be transferred from the client to the server side.

Parameter Handling in Error Situations

Parameter handling in error situations is different:

If an error occurs during local execution, all parameter modifications performed so far are in effect, because
parameters are passed via "call by reference".
If an error occurs during remote execution, however, all parameters remain unchanged.

Copyright © Software AG 200212

Principles of Natural RPCRestrictions and Limitations when Using Natural RPC

Natural Statement Reactions

Several Natural statements may react in a different way, for example:

Statement Description

OPEN/CLOSE
CONVERSATION

If executed on a server, these statements do not affect the client session. When the
server itself acts as a client for another server (as agent), these statements only affect
the conversations on the second server.

PASSW The password setting remains active at the server side only, also for subsequent
executions by other users.

SET CONTROL,
SET GLOBALS,
SET KEY,
SET TIME,
SET WINDOW

No settings are returned to the caller.

STACK All stack data are released after execution.

STOP,
TERMINATE

These statements do not stop the client session.

Dynamic Arrays in Subprograms

Dynamic arrays in subprograms can only be handled if you do not execute the remote CALLNAT via a stub.

Location of Conversations

Both subprograms (S1 and S2) must be accessed at the same location, i.e. either locally or remotely. You are not
allowed to mix up local and remote CALLNATs within a conversation. If the subprograms are executed
remotely, both subprograms will be executed by the same server replicate.

Future Restrictions of Statement Usage with RPC

Current State

With Natural Version 3.1 (mainframe environments) or Version 4.1 (Windows, OpenVMS and UNIX
environments), the use of the following statements in conjunction with RPC is theoretically possible, but not
recommended, as it causes undesired effects:

Statement Description

TERMINATE Using this statement causes the server to be terminated, regardless of conversations that may
still be open.

FETCH,
RUN,
STOP

Using these statements causes the CALLNAT context to be lost.
Upon a FETCH, RUN or STOP statement, the server detects that it has lost its CALLNAT
context
and returns a corresponding Natural error message to the client; at that time, however, the
statement has already been executed by the server.
Exception: This does not apply to FETCH RETURN.

INPUT Input values are unpredictable when the input data are read from a file (and not from the stack).

13Copyright © Software AG 2002

Natural Statement ReactionsPrinciples of Natural RPC

Future State

The use of the statements FETCH, INPUT and RUN in conjunction with the Natural RPC will be inhibited.

Statement Description

FETCH,
RUN, INPUT

Not permitted.

STOP,
TERMINATE

Same as ESCAPE ROUTINE.

Copyright © Software AG 200214

Principles of Natural RPCFuture Restrictions of Statement Usage with RPC

Setting Up a Natural RPC Environment
To set up a Natural RPC environment, you must perform the following steps for all client and server Naturals:

Setting Up a Natural Client
Setting Up a Natural Server
Setting Up an EntireX Broker Access
Setting Up an EntireX Broker Environment
Starting a Natural Server
Considerations for Natural RPC Servers with Replicates

Setting Up a Natural Client
To set up a Natural client proceed as described below:

1. Define the name of the server to be used.
Use the SYSRPC Service Directory function under Natural RPC 5.1 or under the current version of Natural
RPC and define the name of the server to be used for each CALLNAT to be executed remotely.
The generated directory subprogram NATCLTGS must be made available to the Natural client application.
If you have not generated NATCLTGS in your client library, you have to move NATCLTGS to this library
or to one of the Steplibs.
Optionally, you can use the following server selection techniques:

Address a default server;
for more information, see Specifying a Default Server Address Dynamically,
or profile parameter DFS.
Try alternative servers;
for more information, see Modifying RPC Profile Parameters Dynamically,
or profile parameter TRYALT.
Use a Remote Directory Server (RDS),
for more information, see Using a Remote Directory Server, or profile parameter RDS.

For Windows, OpenVMS and UNIX Environments:
Predict servers are not maintained in the SYSRPC utility. For information on how to connect to a Predict
server, see the profile parameter USEDIC or the Dictionary Server Assignments function in the Global
Configuration File.

2. Generate a stub subprogram.
Skip this step, if you want to work without stub. In this case, set the Natural profile parameter AUTORPC
to ON, see Working with Automatic Natural RPC Execution.
For each CALLNAT to be executed remotely, use the Stub Generation function of the SYSRPC utility, see
Creating Stub Subprograms.
The generated stub must be made available to the Natural client environment. If you have not generated the
stub subprogram in your client library, you have to move the stub subprogram to this library or to one of the
Steplibs.

3. Set the Natural profile parameters relevant to the client-specific handling of remote procedure calls.
These parameters are (all optional, except RPCSIZE on mainframe clients):
RPCSIZE, MAXBUFF, TIMEOUT, AUTORPC, TRYALT, ACIPATT, CSCPATT (for OpenVMS only),
COMPR, DFS, RDS.

15Copyright © Software AG 2002

Setting Up a Natural RPC EnvironmentSetting Up a Natural RPC Environment

Setting Up A Natural Server
A Natural server is a Natural task that can execute Natural subprograms (services). This Natural task is typically
an asynchronous or background task (detached process). The EntireX Broker and the client identify it by using a
nodename and a servername.

To set up a Natural server proceed as described below:

1. Set the Natural profile parameters relevant to the general and server-specific handling of remote procedure
calls in a parameter module for the server NATURAL.
The mandatory profile parameters are:
SERVER, SRVNAME, SRVNODE, RPCSIZE (RPCSIZE refers to mainframe servers only).
Optional parameters are:
RPCSIZE, MAXBUFF, TIMEOUT, LOGONRQ, SRVUSER, TRANSP, TRACE, ACIVERS and CP.
If the EntireX Broker is used, the name specified with SRVNODE must identify an active EntireX Broker
and the name specified with SRVNAME must match a server definition in the EntireX Broker Attribute
File, see Setting Up an EntireX Broker Environment
For Mainframe Environments:
If you want to use TCP/IP, you are recommended to set the TRANSP parameter accordingly, as the
preferred transport method is using Entire Net-work.

2. Ensure that your Natural server session will enter command mode:
Set MENU=OFF in your Natural profile parameters.
Do not put a program onto the Natural stack which never terminates.
Do not use a STARTUP program which never terminates.
Do not disallow NEXT mode in Natural Security for your server library.

3. Ensure that the ADABAS ETID used by the Natural server session is unique within a certain Adabas
nucleus.

4. Start a Natural server as described in the section Starting A Server below. This server then waits for
remote CALLNAT requests from a client.
For OS/390 and VSE/ESA in batch mode:
For information about servers using the NTASK parameter, refer to Considerations for Natural RPC Servers
with Replicates.

Copyright © Software AG 200216

Setting Up a Natural RPC EnvironmentSetting Up A Natural Server

Setting Up an EntireX Broker Access
To set up an EntireX Broker interface proceed as follows:

1. Make the EntireX Broker stub accessible to your Natural environment.
For Mainframe Environments:

If you use the Entire Net-work protocol:
Link the EntireX Broker stub NATETB23 to your Natural or specify RCA=BROKER to load
NATETB23 dynamically at run-time.
If you use the TCP/IP protocol:
Specify RCA=BROKER RCALIAS=(BROKER,stubname)
where stubname refers to one of the TCP/IP-enabled EntireX Broker stubs BKIMBTSO, BKIMBTIA,
EXAAPSB or EXAAPSC.

Refer to the EntireX documentation for details.
For UNIX:
The EntireX Broker library stub can be assigned in the Local Configuration File of the Natural parameter
module, entry NATEXTLIB.
For Windows:
The EntireX Broker stub must be accessible over the registry.

2. Set the RPC parameter ACIVERS according to your requirements:
Note: The ACIVERS value set in the parameter module can only work if the EntireX Broker and EntireX
Broker stub support this version as well.

17Copyright © Software AG 2002

Setting Up an EntireX Broker AccessSetting Up a Natural RPC Environment

Setting Function

ACIVERS=2 (Default) Support of the EntireX Broker functions LOGON and LOGOFF.
With Natural Version 3.1 (for mainframes) and Version 4.1 (for Windows, OpenVMS and
UNIX environments), the server performs a LOGON to the EntireX Broker before
executing the REGISTER, and a LOGOFF after the DEREGISTER. This does not imply
any security checks, but it is a pure EntireX Broker management function, see EntireX
Broker function LOGON.

ACIVERS=3 Support of EntireX Broker non-numeric conversation IDs.
When this Natural parameter is set to 3 or higher, the EntireX Broker will also assign
non-numeric conversation IDs.
If a Natural client issues an OPEN CONVERSATION and the client’s ACIVERS is 3 or
higher, the EntireX Broker will be able to automatically assign non-numeric conversation
IDs. It will not check whether the associated server does accept non-numeric conversation
IDs, but only the ACIVERS of the requestor (a Natural client in this case) will be decisive.
Therefore, make sure that both the Natural client and the server support the
respective ACI version.

ACIVERS=4 Support of code pages and (for servers only) Natural Security.
With EntireX Broker ACI Version 4 or higher, the Natural RPC supports code pages. For
this, the name of the code page can be specified in the Natural profile parameter CP for
clients and servers.
The evaluation of the code page is done by the EntireX Broker. The EntireX Broker
translates the RPC data sent according to the code page of client and server to the
corresponding target code page.
The CP parameter can be set by the client and/or by the server. It applies for the current
process. This means that the client code page does not need to be identical with the server
code page.
With Natural Version 3.1 (for mainframes) and Version 4.1 (for Windows, OpenVMS and
UNIX environments), the server is enabled to logon to the EntireX Broker using a
qualified user ID.
If the Natural parameter/subparameter SRVUSER is set to *NSC and the server is running
under Natural Security, the Natural RPC will automatically pass the current Natural user
ID (*USER) and the password defined in Natural Security to the EntireX Broker, where
they are checked for conformity with the EntireX Broker security data.

ACIVERS=6 If you are using the EntireX Broker stub EXAAPSC (CICS only), we strongly recommend
that you use the specification of the ACI Version 6. In this case, Natural will use the
TERMINATE option for the LOGOFF from the EntireX Broker.

3. For additional RPC parameters affecting the EntireX Broker, refer to the Profile Parameters section in the
Parameter Reference documentation.

Using TCP/IP as a Transport Method

If TCP/IP is used as transport method, you must define the server node in the hosts and services directory of
your TCP/IP installation, as the length of the profile parameter srvnode is restricted to 8 characters which
disables the use of full TCP/IP addresses with port numbers.

This restriction is obsolete with Natural RPC Version 5.1 as the length of the server node can be up to 32
characters.

Copyright © Software AG 200218

Setting Up a Natural RPC EnvironmentUsing TCP/IP as a Transport Method

Setting Up an EntireX Broker Environment
In the EntireX Broker Attribute File, add the following:

1. For each Natural RPC server, a service definition must be specified as follows:
CLASS=RPC, SERVICE=CALLNAT, SERVER=servername.

2. If you want to use the conversion services, set CONVERSION = userexit. In this case, you must set the
Natural profile parameter CP accordingly.

3. If the Natural RPC client and the Natural RPC server are of Natural Version 3.1 or higher (mainframe
environments) or of Natural Version 4.1 or higher (Windows, OpenVMS and UNIX environments), you can
set
AUTOLOGON=NO.
In this case, ACIVERS must be 2 or higher.

4. If both the Natural RPC client and the Natural RPC server are of Natural Version 3.1 or higher (mainframe
environments) or of Natural Version 4.1 or higher (Windows, OpenVMS and UNIX environments) and
Natural Security is installed, you can enable EntireX Security by setting:
SECURITY=YES.
In this case, SRVUSER must be set to *NSC on the server side.

19Copyright © Software AG 2002

Setting Up an EntireX Broker EnvironmentSetting Up a Natural RPC Environment

Starting a Natural Server
Any kind of Natural session can be used as a Natural RPC server. But typically, a Natural server is a Natural
session which is started as an asynchronous or as a background task.

For the purpose of starting a server, you have the following options:

Create an RPC-specific Natural parameter module, see Setting Up a Natural Server.
Alternatively, you can also specify the profile parameters dynamically (PARM=parm).
In mainframe environments only: The RPC parameter may be specified in a profile created with the
SYSPARM utility.
Natural would then be started with
PROFILE = srvprof
where srvprof is the name of the profile.

How a Natural server is started depends on the environment.

Starting a Natural Server in a Mainframe Online Environment

To start a Natural server in a mainframe online environment, enter the following command:

<Natural transaction code>
 RPC=(SERVER=ON, SRVNAME=servername , SRVNODE=nodename,
 RPCSIZE= n, MAXBUFF=n)

For CICS and Com-plete only:
You can also use the Natural program STARTSRV in library SYSRPC to start a Natural server in asynchronous
mode.

Starting a Batch Server

Batch servers are started correspondingly, for a sample JCL see Using the Server Trace Facility.
You can also run a batch server with replicates by setting the RPC parameter NTASKS to a value greater than 1
(OS/390 and VSE/ESA only). Replicates are attached to a Natural main task as additional server tasks. They
enable you to start several identical servers in the same region.

Starting a Server in an OpenVMS Environment

To start a Natural server under OpenVMS, enter the following commands in the DCL command procedure
"myserver.com":

$ DEFINE NATOUTPUT NLA0:
 $ NAT parm= serverparm

serverparm must be entered in upper-case letters.

Then submit "myserver.com" to a batch queue: $ SUBMIT myserver.com

Note:
If you are using Natural for OpenVMS Version 2.1.7 as a client or as a server in an RPC conversation, and you
are using CSCI, the server-name must contain the "#" character, for example: "SRV#1".

Copyright © Software AG 200220

Setting Up a Natural RPC EnvironmentStarting a Natural Server

Starting a Server in a UNIX Environment

To start a Natural server under UNIX, enter the following command:

natural parm= serverparm >/dev/null <dev/null &

Starting a Server in a Windows Environment

To start a Natural server under Windows, proceed as follows:

1. Create a shortcut for Natural.
2. Enter the shortcut properties.
3. Create a Natural parameter module with the RPC server parameters set.
4. In the Target input field, edit the Natural path and append:

PARM = serverparm batch

21Copyright © Software AG 2002

Starting a Server in a UNIX EnvironmentSetting Up a Natural RPC Environment

Considerations for Natural RPC Servers with Replicates
For OS/390 and VSE/ESA only.

Natural RPC Batch Server with NTASKS >1

The main task and all replicates run in the same OS/390 region or VSE/ESA partition.

1. Use the reentrant version ADALNKR of the Adabas link module ADALNK.
If you use ADAUSER, you must rename ADALNKR to ADALNK.
Note:
You may need a separate Copy of the reentrant ADALNK module if you are using 3GL programs which do
not pass a work area as 7th Adabas parameter to the Adabas interface.

2. In the NATPARM module:
Set the NTRPC subparameter NTASKS = n, where n is the number of parallel servers (< 100) to be
started, including the main task.
Note for VSE/ESA:
The number of subtasks is restricted by the operating system. Ask your system administrator.
ETID must be specified as a blank character to prevent a NAT3048 (ETID not unique in Adabas
nucleus) error when the subtask is started.

3. When using dynamic Natural profile parameters:
Use the CMPRMIN dataset to pass the dynamic Natural profile parameters to Natural. Do not use the
PARM card or the CMSYNIN dataset.

4. When using a local buffer pool (OS/390 only):
Each subtask allocates its own local buffer pool unless you specify a shared local buffer pool. See Natural
profile parameter LBPNAME in the section NTOS Macro - Generation Parameters for Natural under
OS/390 in the Natural Operations for Mainframes documentation.

5. In the Natural front-end link job (OS/390 only):
Link the front-end reentrant by using the RENT option of the linkage editor.
If the front-end is not linked with the RENT option, only the main task will start the communication with
the EntireX Broker. All subtasks are set to a WAIT status by OS/390, until the main task has been
terminated. If you terminate the RPC server lateron, the address space will hang and must be cancelled.
Note:
If you use ADAUSER you must not link ADAUSER with your front-end as ADAUSER is non-reentrant.
Instead, use the Natural profile parameter ADANAME and set ADANAME to ADAUSER. This will cause
Natural to load ADAUSER dynamically at runtime.

6. Make sure that any other modules that are additionally linked to the Natural nucleus are reentrant. Any
dynamically loaded programs must also be reentrant.
Note for OS/390:
If you cannot make a module reentrant, link the module as non-reusable (do not specify the link option
RENT or REUS). This will ensure that each subtask gets its own copy.

Running a Batch Server with Replicates

For a sample JCL, see Using the Server Trace Facility.

Copyright © Software AG 200222

Setting Up a Natural RPC EnvironmentConsiderations for Natural RPC Servers with Replicates

Operating a Natural RPC Environment
This section mainly describes the tasks required to operate a Natural RPC environment. Some of these tasks are
performed with the SYSRPC utility. For instructions on the functions the SYSRPC utility provides, refer to the
Natural SYSRPC Utility documentation.

This section covers the following topics:

Specifying RPC Server Addresses
Stubs and Automatic RPC Execution
Modifying RPC Profile Parameters Dynamically
Executing Server Commands
Logon to a Server Library
Using the LOGON Option
Using Natural RPC with Natural Security
Using Natural RPC with EntireX Security
Using Compression
Using Secure Socket Layer
Monitoring the Status of an RPC Session
Handling Errors

Specifying RPC Server Addresses
To each remote CALLNAT request, a server must be assigned (identified by servername and nodename) on
which the CALLNAT is to be executed. Therefore, all subprograms to be accessed remotely must be defined:

in a local service directory on the client side,
or in a remote directory accessed via a remote directory server,
or by way of default server addressing with the RPC profile parameter DFS,
or within the client application itself by way of default server addressing.

In addition to the methods mentioned above, you can specify alternative servers.

With Natural RPC Version 5.1, it is also possible to define servers using the EntireX location transparency.

Below is information on:

Using Local Directory Entries
Using Remote Directory Entries
Specifying a Default Server Address at Natural Startup
Specifying a Default Server Address within a Natural Session
Using an Alternative Server
Using EntireX Location Transparency

Using Local Directory Entries

All data of a client’s local service directory is stored in the subprogram NATCLTGS. At execution time, this
subprogram is used to retrieve the target server. As a consequence, NATCLTGS must be available in the client
application or in one of the Natural steplibs defined for the application.

23Copyright © Software AG 2002

Operating a Natural RPC EnvironmentOperating a Natural RPC Environment

If NATCLTGS has not been generated into a steplib or resides on another machine, use the appropriate Natural
utility (SYSMAIN, SYSTRANS or SYSOBJH) to move NATCLTGS into one of the steplib defined for the
application.

If you are using a NATCLTGS for joint usage, you must make it available to all client environments, for
example by copying it to the library SYSTEM, or, if an individual copy is used for a client, it must be maintained
for this client using the Service Directory maintenance function of the SYSRPC utility.

To define and edit RPC service entries, see the Service Directory function under Natural RPC 5.1 or under the
current version of Natural RPC, as described in the SYSRPC Utility documentation.

Using Remote Directory Entries

A remote directory contains service entries that can be made available to several Natural clients. The Natural
clients can retrieve these service entries from remote directory servers. For information on the purpose and on
the installation of remote directory servers, see Using a Remote Directory Server.

Specifying a Default Server Address at Natural Startup

Instead of addressing a server by using a local or remote service directory, you can preset a default server with
the RPC profile parameter DFS, as described in your Natural Operations documentation. This server address is
used if the subprogram can be found in neither the local nor the remote service directory.

The DFS setting determines the default server for the whole session or until it is overwritten dynamically.

If no DFS setting exists and the server address of a given remote procedure call could not be found in the service
directory, a Natural error message is returned.

A default server address defined within a client application remains active even if you log on to another library
or if a Natural error occurs.

Specifying a Default Server Address within a Natural Session

The client application itself may dynamically specify a default server address at runtime. For this purpose,
Natural provides the interface USR2007N in the library SYSEXT. The interface enables you to determine a
default server address that is to be used each time a remote program cannot be addressed via the service
directory. It includes the following parameters:

Copyright © Software AG 200224

Operating a Natural RPC EnvironmentUsing Remote Directory Entries

Parameter Format Explanation

function A1 P Put: Determines that the server address (composed of the parameters
nodename and servername, see below) is the default address for all subsequent
remote procedure calls not defined in the service directory.

To remove a default server address, specify a "blank" for nodename and
servername.

G Get: Retrieves the current default server address as set by the function P.

nodename A8 Specifies/returns the name of the server node to be addressed.
With Natural RPC Version 5.1, the node name may have up to 32 characters for physical
node names and up to 192 characters for logical node names. See Using EntireX
Location Transparency.

servernameA8 Specifies/returns the server name to be addressed.
With Natural RPC Version 5.1, the server name may have up to 32 characters for
physical server names and up to 192 characters for logical service names. See Using
EntireX Location Transparency.

logon A1 Specifies/returns the logon option.

protocol A1 Specifies/returns the transport method.
Valid value: B (=EntireX Broker).

The Natural subprogram NATCLTPS in the library SYSRPC is only maintained for compatibility reasons.
Except for logon and protocol, it provides the same parameters as the interface USR2007N.

Using an Alternative Server

To avoid connection failures, you may want to define several alternative servers for a remote CALLNAT. If you
specify such alternative servers, Natural proceeds as follows:

The client makes a first attempt to establish the connection.
If this attempt fails, instead of providing an error message, a second attempt is made, however, this time not
on the same server. Instead, the service directory is searched again starting at the current entry to find out
whether or not another server is available which offers the desired service.
If a second entry is found, Natural tries to establish the connection to this server. If the remote procedure
call is performed successfully, the client application keeps on running. The user does not notice whether the
connection to the first server or to the alternative server produced the result.
If no further entry is found or if the connection to alternative servers fail, Natural issues a corresponding
error message.

 To enable the use of an alternative server

1. Define more than one server in the service directory for the same service.
2. Set the Natural RPC profile parameter TRYALT to ON to give permission to use an alternative server.

This parameter can also be set dynamically for the current session. See the Parameter Maintenance function as
described in the SYSRPC Utility documentation.

Using EntireX Location Transparency

Using EntireX location transparency, you can change physical node and server names without having to
configure anything or to change client and/or server programs. Now, instead of using a physical node and
physical server name, a server can be addressed by a logical name. The logical name is mapped to the physical
node and server names using directory services.

25Copyright © Software AG 2002

Using an Alternative ServerOperating a Natural RPC Environment

To take advantage of location transparency, the Natural RPC (as of Version 5.1) has been enabled to accept a
logical name wherever only a node and server name could be specified before. The logical name is passed to the
EntireX Broker before it is used the first time.

The maximum length of a logical name is 192 characters. To avoid new Natural profile parameters, a logical
name is specified in the server name part of the already existing parameters. There are two kinds of logical
names:

Logical node names
With a logical node name you specify a logical name for the node only in conjunction with a real server
name. A logical node name can be used in all places where you can also use a real node name. To define a
logical node name the keyword LOGBROK must be used.
Example:
SRVNVODE=ŸLOGBROK=logical_node_name,my_setŸ
Logical services
With a logical service, you specify a logical name for both the node and the server. A logical service can be
used in all places where you can also use a real node and server name. To define a logical service, the node
name must be set to * (intentionally left empty), and the server name contains the logical service name.
Example:
SRVNVODE=Ÿ*Ÿ SRVNAME=Ÿlogical_service_name,my_setŸ
Note:
In the case of interface USR2071N, you can LOGON to a logical service name by using the keyword
LOGSERVICE together with the logical service name in the field broker-id.

For more details about the EntireX location transparency, refer to the EntireX documentation.

The following components refer to node and server names:

Natural profile parameters SRVNODE, SRVNAME, DFS and RDS
Service maintenance of the SYSRPC utility
Service directory (NATCLTGS)
User application interfaces USR2007N, USR2071N
Service programs RPCERR, RPCINFO

See also Location Transparency in Service Directory Maintenance in the Natural SYSRPC utility documentation.

Stubs and Automatic RPC Execution
Stubs are no longer required if automatic Natural RPC execution is used, as described in Working with
Automatic Natural RPC Execution below.

However, generating stubs provides the advantage of controlling the CALLNAT(s) executed remotely and
facilitates error diagnoses. Should a remote call fail due to an incorrect CALLNAT name, the Natural error
message issued then helps to immediately identify the problem cause. Without a stub, for an incorrect
CALLNAT you may receive follow-up errors returned from the transport layer or the Natural server.

Below is information on:

Creating Stub Subprograms
Working with Automatic Natural RPC Execution

Copyright © Software AG 200226

Operating a Natural RPC EnvironmentStubs and Automatic RPC Execution

Creating Stub Subprograms

With the Stub Generation function of the SYSRPC utility, you can generate the Natural stub subprograms used
to connect the client’s calling program to a subprogram on a server. The stub consists of a parameter data area
(PDA) and of the server call logic.

The PDA contains the same parameters as used in the CALLNAT statement of the calling program and must be
defined in the Stub Generation screen of the Stub Generation function. If a compiled Natural subprogram with
the same name already exists, the PDA used by this subprogram is used to preset the screen. The server call logic
is generated automatically by the Stub Generation function after the PDA has been defined.

At execution time, the Natural application program containing the CALLNAT statement and the stub
subprogram must exist on the client side. The Natural application subprogram must exist on the server side. Both
the stub and server subprograms must have the same name.

For information on the SYSRPC Stub Generation function, see the relevant section in the SYSRPC Utility
documentation.

Working with Automatic Natural RPC Execution

You are not required to generate Natural RPC stubs, but you can work with automatic Natural RPC execution
(i.e. without using Natural stubs). To work with automatic Natural RPC execution set the RPC parameter
AUTORPC as follows:

AUTORPC=ON

In that case, you can omit the generation of the client stub during your preparations for RPC usage. When the
automatic Natural RPC execution is ON, Natural behaves as follows:

if a subprogram cannot be found locally, Natural tries to execute it remotely (a stub subprogram is not
needed),
the parameter data area will then be generated dynamically during runtime.

As stubs only exist for client programs, this feature has no effect on the CALLNAT program on the server.

If AUTORPC is set to ON, and a Natural stub exists, it will still be used.

Modifying RPC Profile Parameters Dynamically
With the Parameter Maintenance function, for the current session, you can dynamically modify some of the RPC
profile parameters set in the Natural profile parameter module.

Attention:
These modifications are retained as long as the user session is active; they are lost when the session is
terminated. Static settings are only made using Natural profile parameters.

For information on the SYSRPC Parameter Maintenance function, see the relevant section in the SYSRPC
Utility documentation.

Executing Server Commands
Active servers that have been defined in the service directory (see Specifying RPC Server Addresses) can be
controlled with the SYSRPC server command execution functions under Natural RPC 5.1 or under the current
version of Natural RPC, as described in the relevant section in the SYSRPC Utility documentation.

27Copyright © Software AG 2002

Modifying RPC Profile Parameters DynamicallyOperating a Natural RPC Environment

Logon to a Server Library
The server library on which the callnat is executed depends on the RPC LOGON option on the client side and a
couple of parameters on the server side.

The following table shows which the relevant parameters are and how they influence the library setting:

 Client Server

 1 2 3 4 5 6 7

 *library-id RPC
LOGON
flag for

server entry
set?

LOGONRQ
set?

Server
started with
STACK=

NSC
or

native
Natural?

NSC:
RPC LOGON

option in
library
profile

Server
*library-id

1 Lib1 no no logon lib1 No influence N/-- Lib1

2 Lib1 no no logon lib2 No influence N/-- Lib2

3 Lib1 no yes (Client LOGON flag = no) and (LOGONRQ = yes)
is not possible.

4 Lib1 yes No influence No influence NSC AUTO Lib1

5 Lib1 yes No influence No influence NSC N Lib1

6 Lib1 yes No influence No influence Native Natural -- Lib1

Explanation of the table columns:

1. The library ID of the client application where the callnat is initiated.
2. The value of the RPC LOGON flag. Can be set for a whole node or a server. The flag can be set in the

Service Directory of SYSRPC or using the DFS parameter or using the interface USR2009P.
3. LOGONRQ can be set as a Natural profile parameter at server startup.
4. The library ID to which the server is positioned at its startup.
5. Does the server run under Natural Security (NSC) or not?
6. The setting of the LOGON option in the NSC library profile (Session options > RPC restrictions) of the

NSC server application. If the NSC LOGON option is set to AUTO, only library and user ID are taken. If
set to N (default), the library, user ID and password parameters are evaluated.

7. The library on the server where the CALLNAT program is finally executed.

Using the LOGON Option
The LOGON option defines on which library the remote subprogram is to be executed. See also Logon to a
Server Library.

When you do not use the LOGON option, the CALLNAT is executed on the library to which the server is
currently logged on. This server logon is defined with the Natural profile parameter STACK = (LOGON
library). The server will search for the CALLNATs to be executed in library (and all associated steplibs defined
for library).

A client application can be enabled to execute a subprogram on a different library by setting the LOGON option
for this subprogram. This causes the client to pass the name of its current library to the server, together with this
LOGON option. The server will then logon to this library, searching it for the desired subprogram and, if the
latter is found, it will execute it. After that, it will make a logoff to the previous library.

Copyright © Software AG 200228

Operating a Natural RPC EnvironmentLogon to a Server Library

Settings Required on the Client Side

To set the LOGON option, you can use either the SYSRPC Service Directory maintenance function under
Natural RPC 5.1 or under the current version of Natural RPC (see the SYSRPC Utility documentation) or - when
using a default server - the DFS profile parameter or the Interface USR2007N.

Settings Required on the Server Side

No setting is required on the server side.

Using Natural RPC with Natural Security
Natural RPC also supports Natural Security in client/server environments, where security may be active on either
(or both) sides. If security data is to be passed to the server, the LOGON option (see also Using the LOGON
Option) must be used.

The user ID and password are established as follows:

If the client runs under Natural Security, the user ID and password from the Natural Security logon on the
client are used and passed to the server.
For non-Natural Security clients, the interface USR1071 is provided which the user has to execute and
which prompts the user to specify his logon data - which are then passed to the server. The interface
USR1071 is contained in the library SYSEXT. The logon data contains the user ID and password from
which the so-called security token is generated, and additionally some administrative information. For a
more detailed description, see the USR1071T member in library SYSEXT. A typical interface call would
read:
USR1071P userid password ’0’ ’0’ ’0’ ’0’ ’Y’ ’Y’ .

If the server runs under Natural Security, the user ID and password from the client are verified against the
corresponding user security profile on the server, and the logon to the requested library and the execution of the
subprogram are performed according to the corresponding Natural Security library and user profile definitions on
the server.

After the execution of the subprogram, the library used before the CALLNAT request is made current again on
the server. In the case of a conversational RPC, the first CALLNAT request within the conversation sets the
library ID on the server; and the CLOSE CONVERSATION statement resets the library ID on the server to the
one before the conversation was opened.

To enforce the LOGON option - that is, if you want a server to accept only requests from clients where the
LOGON option is set - set the profile parameter/subparameter LOGONRQ to ON for the server.

As part of the Natural RPC Restrictions in library profiles of Natural Security, a session option "Close all
databases" is provided. It causes all databases which have been opened by remote subprograms contained in the
library to be closed when a Natural logon/logoff to/from the libraries is performed. This means that each client
uses its own database session. See Natural RPC Restrictions in the Natural Security documentation.

Using Natural RPC with EntireX Security
Natural RPC fully supports EntireX Security on the client side and the server side.

29Copyright © Software AG 2002

Using Natural RPC with Natural SecurityOperating a Natural RPC Environment

Client Side

To logon to and logoff from the EntireX Broker, the interface USR2071N is provided in library SYSEXT. To
logon to EntireX Broker, you use the logon function of USR2071N and pass your user ID and password to the
selected EntireX Broker. After a successful logon, the security token returned is saved by Natural and passed to
the EntireX Broker on each subsequent call. The logon feature is fully transparent to the Natural application.

If EntireX Security has been installed or if AUTOLOGON=NO has been specified in the EntireX Broker
attribute file, you must invoke USR2071N with the logon function before the very first remote CALLNAT
execution.

You are recommended to invoke USR2071N with the logoff function as soon as you no longer intend to use a
remote CALLNAT.

Using the Interface USR2071N

USR2071N has the following parameters:

Parameter I/O Format Description

function I A08 Function code.

Values:

LOGON Logon to EntireX Broker

LOGOFF Logoff from EntireX Broker

broker-id I A08 Broker ID
With Natural RPC Version 5.1, the broker-id may have up to 32 characters for
physical node names and up to 192 characters for logical node names or logical
service names. See Using EntireX Location Transparency.

user-id I A08 User ID.

password I A08 User ID’s password.

newpassw I A08 User ID’s new password.

rc O N04 Return value:

0 ok

1 invalid function code

9999 EntireX Broker error (see message)

message O A80 Message text, returned by EntireX Broker.

The Subprogram USR2071N should be copied to the Library SYSTEM or to the steplib library, or to any
application.

The parameters listed above must be defined via DEFINE DATA.

The calling program must contain the following statement:

CALLNAT ’USR2071N’ FUNCTION BROKER-ID USER-ID PASSWORD NEWPASSW RC MESSAGE

Copyright © Software AG 200230

Operating a Natural RPC EnvironmentClient Side

Special considerations when using location transparency:

If you want to LOGON using a logical node name, you have to use the LOGBROK keyword.

BROKER-ID := ‡LOGBROK= my_logical_node,my_set Ÿ

If you want to LOGON using a logical service name, you have to use the LOGSERVICE keyword.

BROKER-ID := ‡LOGSERVICE= my_logical_service,my_set Ÿ

Functionality

LOGON

An EntireX Broker LOGON function is executed to the named broker-id with the user-id and the password
passed. After a successful LOGON call, the client can communicate with the EntireX Broker broker-id as usual.

With newpassw the client user can change her/his password via the EntireX Security features.

Notes:

If a successful LOGON has been performed, the user ID used in this LOGON will be passed to the named
EntireX Broker on all subsequent remote procedure CALLNATs which are routed via this EntireX Broker.
Without an explicit LOGON, the current contents of *USER is used. The same applies if you have issued a
LOGON to EntireX Broker 1, but your remote procedure CALLNAT is routed via EntireX Broker 2.
Only the last LOGON is internally maintained and can be used to access the named EntireX Broker. With
Natural RPC Version 5.1, this restriction is dropped and it is possible to LOGON to multiple EntireX
Brokers.
Before a new LOGON is executed, a LOGOFF is done with the data of the last successful LOGON.
An internal reLOGON is done after an EntireX Broker timeout has occurred, if the original LOGON was
done without a password (the password used in the LOGON is not saved). If no internal reLOGON is
possible after a timeout has occurred, the client has to explicitly reissue the LOGON.

LOGOFF

An EntireX Broker LOGOFF function is executed to the broker-id named for the user-id passed.

Server Side

If the value of ACIVERS is 2 or higher, the server will log on to the EntireX Broker at the session start using the
LOGON function. The user ID is the same as the user ID defined by SRVUSER.

If EntireX Security has been installed and if the EntireX trusted user ID feature is not available, there are two
alternative ways to specify the required password:

SRVUSER=*NSC

If Natural Security is installed on the server, you can specify SRVUSER=*NSC to determine that the
current Natural Security userID which was used when the server was started is used for the LOGON in
conjunction with the accompanying Natural Security password. In this case, the value set for ACIVERS
must be at least 4.

USR2072N

Interface USR2072N enables you to specify a password which is used for the LOGON in conjunction with
SRVUSER.

31Copyright © Software AG 2002

Server SideOperating a Natural RPC Environment

Using the Interface USR2072N

USR2072N has the following parameter:

Parameter I/O Format Description

password I A08 User ID’s password.

The Subprogram USR2071N should be copied to the library SYSTEM or to the steplib library, or to any
application.

The parameter listed above must be defined using the DEFINE DATA statement.

The calling program must contain the following statement:

CALLNAT ’USR2072N’ PASSWORD

The calling program must be executed before the Natural RPC server has started its initialization. To accomplish
this, put the name of the calling program on the Natural stack when starting the server:

STACK=(LOGON "server library";USR2072P "server password")

Using Compression
Compression types may be: 0, 1 or 2. Stubs generated with COMPR = 1 or 2 can help reduce the data transfer
rate.

Compression
Type

Description

COMPR=0 All CALLNAT parameter values are sent to and returned from the server,
i.e. no compression is performed.

COMPR=1
(default)

M-type parameters are sent to and returned from the server, whereas O-type parameters
are only transferred in the send buffer. A-type parameters are only included in the reply buffer.
The reply buffer does not contain the Format description.

COMPR=2 Same as for COMPR = 1, except that the server reply message still contains the format
description of the CALLNAT parameters. This might be useful if you want to use certain
options for data conversion in the Software AG product EntireX Broker (for more information,
see the description of Translation Services in the EntireX Broker documentation).

Using Secure Socket Layer
With Natural RPC Version 5.1, Secure Socket Layer (SSL) support for the TCP/IP communication to the
EntireX Broker has been introduced.

To enable the EntireX Broker to recognize that the TCP/IP communication should use SSL, you must use one of
the following methods:

Append the string :SSL to the node name. If the node name has already been postfixed by the string :TCP,
:TCP must be replaced by :SSL.
Prefix the node name with the string //SSL:

Copyright © Software AG 200232

Operating a Natural RPC EnvironmentUsing Compression

Example:
SRVNODE=Ÿ157.189.160.95:1971:SSLŸ

Before you access an EntireX Broker using SSL, you must first invoke USR2035N to set the required SSL
parameter string

Using Interface USR2035N

USR2035N has the following parameters:

Parameter I/O Format Description

function I A01 Function code.

Values:

P Put: Sprcify a new SSL parameter string.

G Get: Retrieve previously specified SSL parameter string.

SSLPARMS I A128 SSL parameter string as required by the EntireX Broker

The Subprogram USR2035N should be copied to the library SYSTEM or to the steplib library, or to any
application.

The parameters listed above must be defined via DEFINE DATA.

The calling program must contain the following statement:

CALLNAT ’USR2035N’ FUNCTION SSLPARMS

Functionality of Interface USR2035N

P (specify a new SSL parameter string)

The SSL parameter string is internally saved and passed to EntireX each time an EntireX Broker using SSL
communication is referenced the first time. You may use different SSL parameter strings for several EntireX
Broker connections by calling USR2035N each time before you access the EntireX Broker the first time.

Example:

FUNCTION := ‡PŸ
SSLPARMS := ‡TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=NŸ
CALLNAT ‡USR2035NŸ USING FUNCTION SSLPARMS

To set SSL parameters in case of an Natural RPC server, put the name of the calling program onto the Natural
stack when starting the server.

Example:

STACK=(LOGON server-library;USR2035N ‡PŸ ‡TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=NŸ)

G (retrieve previously specified SSL parameter string)

The previously put SSL parameter string is returned to the caller.

For more information about the SSL parameter string, refer to the EntireX documentation.

33Copyright © Software AG 2002

Using Interface USR2035NOperating a Natural RPC Environment

Monitoring the Status of an RPC Session
This part is organized in the following sections:

Using the RPCERR Program
Using the RPCINFO Subprogram
Using the Server Trace Facility
Defining the Trace File

Using the RPCERR Program

You can use the RPCERR program from the command line or invoke it via FETCH from within a Natural
program.

RPCERR displays the last Natural error number and message if it was RPC related and it also displays the last
BROKER reason code and associated message. Additionally, the node and server name from the last EntireX
Broker call can be retrieved.

Example of an RPC Error Display: RPCERROR

NATURAL error number: NAT6972
 NATURAL error text :
 Directory error on Client, reason 3 :3:.

RPC error information:
 No additional information available.

Server Node: Library: SYSRPC
 Server Name: Program: NATCLT3
 Line No: 0480

Using the RPCINFO Subprogram

You can use the subprogram RPCINFO in your application program to retrieve information on the state of the
current RPC session. This also enables you to handle errors more appropriately by reacting to a specific error
class.

The subprogram RPCINFO is included in the library SYSRPC.

Copyright © Software AG 200234

Operating a Natural RPC EnvironmentMonitoring the Status of an RPC Session

Example:

DEFINE DATA LOCAL USING RPCINFOL
 LOCAL
 1 PARM (A1)
 1 TEXT (A80)
 1 REDEFINE TEXT
 2 CLASS (A4)
 2 REASON (A4)
 END-DEFINE
 ...
 OPEN CONVERSATION USING SUBPROGRAM ’APPLSUB1’
 CALLNAT ’APPLSUB1’ PARM
 CLOSE CONVERSATION *CONVID
 ...
 ON ERROR
 CALLNAT ’RPCINFO’ SERVER-PARMS CLIENT-PARMS
 ASSIGN TEXT=C-ERROR-TEXT
 DISPLAY CLASS REASON
 END-ERROR
 ...
 END

RPCINFO has the following parameters which are provided in the PDA RPCINFOL:

35Copyright © Software AG 2002

Using the RPCINFO SubprogramOperating a Natural RPC Environment

Parameter Format Description

SERVER-PARMS Contains information about the Natural session when acting as a server.
The SERVER-PARMS only apply if you execute RPCINFO remotely on an RPC
server.

S-BIKE A1 Transport protocol used. Possible values: B (EntireX Broker) or C (CSCI,
OpenVMS only).

S-NODE A8 The node name of the server.

S-NAME A8 The name of the server.

S-ERROR-TEXT A80 Contains the message text returned from the transport layer.

S-CON-ID I4 Current conversation ID. Note that this is the physical ID from EntireX Broker,
not the logical Natural ID.
This parameter always contains a value as EntireX Broker generates IDs for both
conversational and non-conversational calls.
If the physical conversation ID is either non-numeric or greater than I4, a -1 is
returned.

S-CON-OPEN L Indicates whether there is an open conversation. This parameter contains value
TRUE if a conversation is open, otherwise it contains FALSE.

CLIENT-PARMS Contain information about the Natural session when acting as a client.
The CLIENT-PARMS only apply if you execute RPCINFO remotely on an RPC
client.

C-BIKE A1 Transport protocol used. Possible values: B (EntireX Broker) or C (CSCI,
OpenVMS only).

C-NODE A8 The node name of the previously addressed server.

C-NAME A8 The name of the previously addressed server.

C-ERROR-TEXT A80 Contains the message text returned from the transport layer.

C-CON-ID I4 Conversation ID of the last server call. Note that this is the physical ID from
EntireX Broker, not the logical Natural ID.
If no conversation is open, the value of this parameter is less than or equal to 0. If
the physical conversation ID is either
non-numeric or greater than I4, a -1 is returned.

C-CON-OPEN L Indicates whether there is an open conversation. This parameter contains value
TRUE if a conversation is open, otherwise it contains FALSE.

Using the Server Trace Facility

Natural RPC includes a trace facility that enables you to monitor server activities and trace possible error
situations.

Activating/Deactivating the Server Trace Facility

To activate/deactivate the server trace facility, start the server with the option

TRACE=n

The integer value "n" represents the desired trace level; that is, the level of detail in which you want your server
to be traced. The following values are possible:

Copyright © Software AG 200236

Operating a Natural RPC EnvironmentUsing the Server Trace Facility

Value Trace Level

0 No trace is performed (default).

1 All client requests and corresponding server responses are traced and documented.

2 All client requests and corresponding server responses are traced and documented; in addition, all RPC
data are written to the trace file.

The RPC trace facility writes the trace data to the Natural Report Number 10.

Defining the Trace File
The trace file definition depends on the environment. Below is information on:

Trace File Handling for Windows

Trace File Handling for Windows

It is recommended that you use a different file name (that is, a different NATPARM parameter file) for each
server so that you can trace them individually. The trace file is defined in the NATPARM parameter file of the
Natural server (see Device/Report Assignments in the section Profile Parameters, Natural Execution
Configuration in the Natural Operations for Windows documentation):

1. Reports
Assign the logical device LPT10 to your Report Number 10.

2. Devices
Instead of selecting a physical printer specification for LPT10, specify a file name that represents the name
of your trace file. As default, old trace files are deleted when a new file with the same name is created.
If you wish to append the new log to the existing one, specify:
>>filename

37Copyright © Software AG 2002

Defining the Trace FileOperating a Natural RPC Environment

Handling Errors
Remote Error Handling
Avoiding Error Message NAT3009 from Server Program
User Exit NATRPC01

Remote Error Handling

Any Natural error on the server side is returned to the client as follows:

Natural RPC moves the appropriate error number to the *ERROR-NR system variable.
Natural reacts as if the error had occurred locally.

Note:
If AUTORPC is set to ON and a subprogram cannot be found in the local environment, Natural will
interpret this as a remote procedure call. It will then try to find this subprogram in the service directory.
If it is not found there, a NAT6972 error will be issued. As a consequence, no NAT0082 error will be issued
if a subprogram cannot be found.

See also Using the RPCERR Program.

Avoiding Error Message NAT3009 from Server Program

If a server application program does not issue a database call during a longer period of time, the next database
call might return a NAT3009 error message.

To avoid this problem, proceed as follows:

1. Add a FIND FIRST or HISTOGRAM statement in program NATRPC39, library SYSRPC.
2. Copy the updated program to library SYSTEM or to the appropriate user library.

User Exit NATRPC01

This exit is called when a Natural error has occurred, actually after the error has been handled by the Natural
RPC runtime and immediately before the response is sent back to the client. This means, the exit is called at the
same logical point as an error transaction, that is, at the end of the Natural error handling, after all ON ERROR
blocks have been processed.

In contrast to an error transaction, this exit is called with a CALLNAT statement and must therefore be a
subprogram which must return to its caller.

The interface to this exit is similar to the interface of an error transaction. In addition, the exit can pass back up
to 10 lines of information which will be traced by the Natural RPC runtime. Only lines which begin with a
non-blank character will be traced.

Important Notes:

1. NATRPC01 must be located in library SYSTEM on FUSER. The STEPLIB concatenation of the library to
which the server currently is logged on is not evaluated.

2. The DEFINE DATA PARAMETER block must not be changed.

Copyright © Software AG 200238

Operating a Natural RPC EnvironmentHandling Errors

Using a Conversational RPC
This section covers the following topics:

Opening a Conversation
Closing a Conversation
Defining a Conversation Context
Modifying the System Variable *CONVID

Opening a Conversation
 To open a conversation

1. Specify an OPEN CONVERSATION statement on the client side.
2. In the OPEN CONVERSATION statement, specify a list of services (subprograms) as members of this

conversation.

The OPEN CONVERSATION statement assigns a unique conversation identifier to the system variable
*CONVID.

More than one conversation may be open in parallel. If subprograms interfere with each other, the application
programs are responsible to manage the various conversations by setting the appropriate *CONVID, which is
evaluated by the CALLNAT instruction.

If the subprogram is a member of the current conversation (referred to by *CONVID), it will be executed at
the server process which is exclusively reserved for this conversation.
If it is not member of the current conversation, it will be executed in a different server process. This also
applies to different conversations.

A conversation can be opened on any program level and CALLNATs within this conversation can be executed
on any other program level below or above.

It is possible to open a client conversation within a remote CALLNAT executed on a server so the server acts as
an agent. As the client only controls its own conversations, and not the server’s, it is the application
programmer’s responsibility to ensure that the conversation on the server is closed properly before the main
client is closed.

39Copyright © Software AG 2002

Using a Conversational RPCUsing a Conversational RPC

Additional Restrictions

The conversational RPC can still be tested locally. To keep the behavior identical if you execute a conversational
CALLNAT remotely or locally, the following additional restrictions apply:

A CLOSE CONVERSATION is not possible within an object which is currently running as a member of
this conversation. This corresponds to the restriction that it is not possible to close a conversation from
within a remotely running program.
It is not possible to execute a conversational CALLNAT which is member of the conversation from within
another (or the same) member of this conversation. This corresponds to the restriction that it is not possible
to execute a conversational CALLNAT which is member of the client’s conversation from a server
subprogram.
It is not recommended to open a conversation from within another conversation’s subprogram.

Closing a Conversation
 To close a conversation

Specify a CLOSE CONVERSATION statement on the client side.

This enables the client to close a specific conversation or all conversations. All context variables of the closed
conversation are then released and the server replicate will be available again for another client.

If you terminate Natural, you implicitly close all conversations.

When a server receives a CLOSE CONVERSATION request, it issues a CLOSE CONVERSATION ALL
statement so that all conversations the server might have opened (as agent) are also closed.

 To close a conversation with implicit BACKOUT TRANSACTION (Rollback)

By default, when a CLOSE CONVERSATION statement is executed, the Rollback option will be sent to the
server together with the CLOSE CONVERSATION statement. This will cause an implicit BACKOUT
TRANSACTION on the server side at the end of the conversation processing.

 To close a conversation with implicit END TRANSACTION (Commit)

You can use the interface USR2032N available in library SYSEXT to cause an implicit END TRANSACTION
on the server side.

The exit has to be called before the next CLOSE CONVERSATION statement is executed. The result is that the
commit option is sent to the server together with the CLOSE CONVERSATION statement and that the server
executes an END TRANSACTION statement at the end of the conversation processing.

The commit option applies to the next CLOSE CONVERSATION statement executed by the client application.
After the conversation(s) has (have) been closed, the default option is used again. This means, that the following
CLOSE CONVERSATION statements will result again in a BACKOUT TRANSACTION statement.

Copyright © Software AG 200240

Using a Conversational RPCClosing a Conversation

Defining a Conversation Context
During a conversation the subprograms that are members of this conversation may share a context area on this
server.

 To do so, declare a data area with the DEFINE DATA CONTEXT statement in each of the concerned
subprograms.

The subprograms, using a context area, behave in the same way if the conversation were local or remote. The
DEFINE DATA CONTEXT statement closely corresponds to the DEFINE DATA INDEPENDENT statement.
All rules which apply to the definition of AIV variables also apply to context variables, with the exception that a
context variable does not need to be prefixed by a "+".

The compiler does not check format/length definition because this requires that the variables be created by
running a program which includes all definitions for this application (as usual with AIVs). This makes no sense
for context variables, because a library containing RPC service routines is usually not application-dependent.

In contrast to AIVs, the caller’s context variables are not passed across CALLNAT boundaries. Context
variables are referenced by their name and the context ID they apply to. A context variable is shared by all
service routines referring to the same variable name within one conversation. Therefore each conversation has its
own set of context variables. Context variables cannot be shared between different conversations even if they
have the same variable name.

The context area will be reset to initial values when an OPEN CONVERSATION statement or a
non-conversational CALLNAT statement is performed.

Modifying the System Variable *CONVID
The system variable *CONVID (format I4) is set by the OPEN CONVERSATION statement and may be
modified by the application program.

Modifying *CONVID is only necessary if you are using multiple conversations in parallel.

41Copyright © Software AG 2002

Defining a Conversation ContextUsing a Conversational RPC

Using a Remote Directory Server - RDS
This section covers the following topics:

RDS Principles of Operation
Using a Remote Directory Server
Creating an RDS Interface
Creating a Remote Directory Service Routine
Remote Directory Service Program RDSSCDIR

RDS Principles of Operation
You have two options to use a service directory:

1. Using a service directory in a Natural subprogram.
Normally, to locate a service, the Natural RPC uses a service directory in a Natural subprogram. This
directory is an initialized LDA data structure in program NATCLTGS generated by the SYSRPC Service
Directory and has to be available to every RPC client application.

2. Using a remote directory.
You can use a remote directory to locate a service. A remote directory server (RDS) enables you to define
directory definitions in one place so that the RDS’s services can be used by all clients in your environment.

This section describes how to use a remote directory server to locate a service.

Copyright © Software AG 200242

Using a Remote Directory Server - RDSUsing a Remote Directory Server - RDS

The remote directory server is implemented as a Natural subprogram.

A sample of this subprogram is provided in library SYSRPC as subprogram RDSSCDIR. It reads the required
directory information from a work file. The interface of this subprogram is documented, which enables you to
develop your own remote directory service. For more information, see the section Creating an RDS Interface.

The RDS interface is the Natural parameter data area of the Natural subprogram and the directory service routine
is the code section of the Natural subprogram. If a remote CALLNAT is not found within the client’s local
service directory, the RPC runtime contacts the remote directory server by executing an internal remote
CALLNAT.

An internal directory cache minimizes the access to the remote directory. The cache information is controlled by
an expiration time which is defined by the remote directory server.

43Copyright © Software AG 2002

RDS Principles of OperationUsing a Remote Directory Server - RDS

Using a Remote Directory Server
 To use a remote directory server

1. Create a directory file for the remote directory service
2. Start the remote directory server and proceed with the following steps.
3. Define the RDS in the profile parameter RDS.

Alternatively, you can use the SYSRPC Service Directory function under Natural RPC 5.1 or under the
current version of Natural RPC. The definition of remote directory servers is still supported for reasons of
compatibility. You should, however, define your RDS in the RDS subparameter of session parameter RPC.
For this purpose, entries are provided that allow to define the location of the directory server. This enables
you to expand existing local directory information by one or more remote directory server definitions. The
example below shows how to define a remote directory server in NATCLTGS.

Copyright © Software AG 200244

Using a Remote Directory Server - RDSUsing a Remote Directory Server

Service Directory

 NODE SERVER LIBRARY PROGRAM LOGON

1 NODE1

2 SERVER1

3 SYSTEM

4 TESTS1

5 TESTS2

6 RDSNODE

7 DIRSRV1

8 #ACI

9 RDSSCDIR

This example locally defines a server named SERVER1. This server may execute the services TESTS1 and
TESTS2.

Additionally, there are definitions for the remote directory server DIRSRV1. A remote directory server is
identified by a preceding "#" sign for the library definition.

The definitions of NODE and SERVER are used as usual in Natural RPC. The library definition defines the
transport protocol (ACI or CSCI) which has to be used to connect the RDS. Note that CSCI only applies to
OpenVMS.

For normal Natural remote procedure calls, the transport protocol is chosen depending on the node pattern
settings in the Parameter Maintenance function as described in the SYSRPC Utility documentation.

Finally, the PROGRAM entry contains the name of the remote subprogram which represents the remote
directory service (in this case, it refers to the sample subprogram RDSSCDIR).

45Copyright © Software AG 2002

Using a Remote Directory ServerUsing a Remote Directory Server - RDS

Creating an RDS Interface
The RDS interface is the parameter data area (PDA) of a Natural subprogram.

To create your own RDS interface you can use the parameter data area shown below.

 DEFINE DATA PARAMETER
 1 P_UDID(B8) /* OUT
 1 P_UDID_EXPIRATION(I4) /* OUT
 1 P_CURSOR(I4) /* INOUT
 1 P_ENTRIES(I4) /* IN
 1 P_REQUEST(A16/1:250) /* IN
 1 P_EXTENT (A16/1:250) /* OUT
 1 P_RESULT(A32) /* OUT
 1 REDEFINE P_RESULT
 2 SRV_NODE(A8)
 2 SRV_NODE_EXT(A8)
 2 SRV_NAME(A8)
 2 SRV_NAME_EXT(A8)
 END-DEFINE

For an explanation of the parameters, refer to the table below.

Copyright © Software AG 200246

Using a Remote Directory Server - RDSCreating an RDS Interface

Parameter Explanation

P_UDID(B8) Unique directory identifier, should be increased after changing the directory
information. The client saves this identifier in its cache. If the binary number
increases from one client request to the next, it causes the client to delete its
local cache information, because it no longer corresponds to the remote
directory information.

P_UDID_EXPIRATION(I4) This defines the expiration time in seconds, that is, the number of seconds
during which the client can use its local cache information without connecting
the RDS to validate the UDID setting. It allows you to define a time limit after
which you can be sure that your directory modifications are active for all
clients. If you set this time to an unnecessarily low value, you may cause a lot
of network traffic to the RDS.

P_CURSOR(I4) The remote procedure call has the option to scan for an alternative server if a
connection to the previous one cannot be established (see RPC subparameter
TRYALT).
This parameter contains zero for a scan from the top and may be modified by
the RDS to remember the record location to continue the scan. The value will
not be evaluated by the client, it will only be inserted from the cache to
continue scanning.

P_ENTRIES(I4) This parameter contains the number of service definitions in P_REQUEST.

P_REQUEST(A16/1:250) A list of services for which a server address can be scanned. An entry is
structured as
program name (A8)
library name (A8)

P_EXTENT (A16/1:250) Among the server address the RDS has to supply, this is the individually
extended information for the requested service, such as security and logon
information (see below).
For each entry in P_REQUEST, the RDS may pass the extended information to
the corresponding P_EXTENT entry. The structure is:
program extension (A8),
library extension (A8).

SRV_NODE(A8) Contains the server node.

SRV_NAME(A8) Contains the server name.

SRV_NAME_EXT(A8) Contains the server name extension.

47Copyright © Software AG 2002

Creating an RDS InterfaceUsing a Remote Directory Server - RDS

Creating a Remote Directory Service Routine
The Remote Directory Service Routine is the code area of a Natural subprogram (the default version of this code
area is subprogram RDSSCDIR in library SYSRPC).

To create your own RDS routine modify the pseudo-code documented below.

 Set UDID and UDID_EXPIRATION values
 IF P_ENTRIES = 0
 ESCAPE ROUTINE
 IF P_CURSOR != 0
 position to next server entry after P_CURSOR
 Scan for server which may execute P_REQUEST(*)
 IF found
 FOR I = 1 to P_ENTRIES
 P_EXTENT(i) = extension of P_REQUEST(i)
 SRV_NODE = found node name
 SRV_NODE_EXT = node extension
 SRV_NAME = found server name
 SRV_NAME_EXT = server extension
 P_CURSOR = position of found server
 ELSE
 P_CURSOR = 0

Copyright © Software AG 200248

Using a Remote Directory Server - RDSCreating a Remote Directory Service Routine

Remote Directory Service Program RDSSCDIR
This program is to be found in library SYSRPC. It reads the directory information from a work file (fixed-block,
record length 80 byte).

Your program could also read the directory information from elsewhere (from a database, for example).

Structure of the Directory Work File

 * comment
 UDID definition
 UDID_EXPIRATION definition
 node definition
 ...
 node definition

UDID Definition

 (UDID)
 binary number (max. 16 digits)

UDID_EXPIRATION Definition

 (UDID_EXPIRATION)
 number of seconds (max. 10 digits)

Node Definition:

 (NODE)
 namevalue (extension)
 server definition
 ...
 server definition

Server Definition

 (SERVER)
 namevalue (extension)
 library definition
 ...
 library definition

Library Definition

 (LIBRARY)
 namevalue (extension)
 program definition
 ...
 program definition

49Copyright © Software AG 2002

Remote Directory Service Program RDSSCDIRUsing a Remote Directory Server - RDS

Program Definition

 (PROGRAM)
 namevalue (extension)
 ...
 namevalue (extension)

Namevalue

 Max. 8 characters in uppercase

The extension after namevalue as well as the following definition lines are optional. For an explanation of the
extension definition, see the Service Directory maintenance function under Natural RPC 5.1 or under the current
version of Natural RPC, as described in the SYSRPC Utility documentation.

Example Directory Read from the Work File:

(UDID)
 ACB8AAB4777CA000
 (UDID_EXPIRATION)
 3600
 * this is a comment
 (NODE)
 NODE1 (extension)
 (SERVER)
 SERVER1
 (LIBRARY)
 SYSTEM
 (PROGRAM)
 TESTS1
 TESTS2 (extension)
 TESTS3
 (SERVER)
 SERVER2 (extension)
 (LIBRARY)
 SYSTEM
 (PROGRAM)
 TESTS4
 (NODE)
 NODE2 (extension)
 (SERVER)
 SERVER1
 (LIBRARY)
 SYSTEM
 (PROGRAM)
 TESTS1
 TESTS2 (extension)
 TESTS3
 TESTS4

In the above example, the directory contains:

Two servers SERVER1 and SERVER2 running on node NODE1.
The server SERVER1 may execute TESTS1, TESTS2 and TESTS3 in library SYSTEM.
The server SERVER2 may execute TESTS4 on library SYSTEM.
One server SERVER1 on node NODE2 which may execute TESTS1 - TESTS4 in library SYSTEM.

The indentation of the lines in the example above is not required. All lines may start at any position (one). You
can modify this file manually.

Copyright © Software AG 200250

Using a Remote Directory Server - RDSRemote Directory Service Program RDSSCDIR

	Cover Page
	page 2

	Table of Contents
	Natural RPC - Overview
	Principles of Natural RPC
	General Information
	Purpose
	Advantages of Natural Remote Procedure Calls
	Natural RPC Modes of Operation
	Availability on Various Platforms
	Mainframe Environments
	Other Environments

	Support of Non-Natural Environments
	Prerequisites

	Natural RPC Operation in Non-Conversational Mode
	Issuing CALLNATs in an RPC Environment

	Natural RPC Operation in Conversational Mode
	General Rules for Local/Remote Subprogram Execution
	Local Subprogram Execution
	Remote Subprogram Execution

	Conversational versus Non-Conversational Mode
	General Rules for Use of Conversational/Non-Conversational RPC
	Possible Disadvantage of Using Conversational RPC

	Database Transactions
	Non-conversational CALLNAT
	Conversational CALLNAT

	Restrictions and Limitations when Using Natural RPC
	User Context Transfer
	System Variable Transfer
	Parameter Handling in Error Situations
	Natural Statement Reactions
	Dynamic Arrays in Subprograms
	Location of Conversations
	Future Restrictions of Statement Usage with RPC

	Setting Up a Natural RPC Environment
	Setting Up a Natural Client
	Setting Up A Natural Server
	Setting Up an EntireX Broker Access
	Using TCP/IP as a Transport Method

	Setting Up an EntireX Broker Environment
	Starting a Natural Server
	Starting a Natural Server in a Mainframe Online Environment
	Starting a Batch Server
	Starting a Server in an OpenVMS Environment
	Starting a Server in a UNIX Environment
	Starting a Server in a Windows Environment

	Considerations for Natural RPC Servers with Replicates
	Natural RPC Batch Server with NTASKS >1
	Running a Batch Server with Replicates

	Operating a Natural RPC Environment
	Specifying RPC Server Addresses
	Using Local Directory Entries
	Using Remote Directory Entries
	Specifying a Default Server Address at Natural Startup
	Specifying a Default Server Address within a Natural Session
	Using an Alternative Server
	Using EntireX Location Transparency

	Stubs and Automatic RPC Execution
	Creating Stub Subprograms
	Working with Automatic Natural RPC Execution

	Modifying RPC Profile Parameters Dynamically
	Executing Server Commands
	Logon to a Server Library
	Using the LOGON Option
	Settings Required on the Client Side
	Settings Required on the Server Side

	Using Natural RPC with Natural Security
	Using Natural RPC with EntireX Security
	Client Side
	Using the Interface USR2071N
	Functionality
	LOGON
	LOGOFF

	Server Side
	Using the Interface USR2072N

	Using Compression
	Using Secure Socket Layer
	Using Interface USR2035N
	Functionality of Interface USR2035N

	Monitoring the Status of an RPC Session
	Using the RPCERR Program
	Using the RPCINFO Subprogram
	Using the Server Trace Facility
	Activating/Deactivating the Server Trace Facility

	Defining the Trace File
	Trace File Handling for Windows

	Handling Errors
	Remote Error Handling
	Avoiding Error Message NAT3009 from Server Program
	User Exit NATRPC01

	Using a Conversational RPC
	Opening a Conversation
	
	Additional Restrictions

	Closing a Conversation
	Defining a Conversation Context
	Modifying the System Variable *CONVID

	Using a Remote Directory Server - RDS
	RDS Principles of Operation
	Using a Remote Directory Server
	Creating an RDS Interface
	Creating a Remote Directory Service Routine
	Remote Directory Service Program RDSSCDIR

